Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Rev. argent. microbiol ; 34(2): 83-94, abr.-jun. 2002.
Article in English | LILACS | ID: lil-331800

ABSTRACT

Peroxidase/H2O2/phenothiazine systems irreversibly inhibit Trypanosoma cruzi dihydrolipoamide dehydrogenase (LADH). Inactivation of the parasite enzyme depended on (a) phenothiazine structure; (b) peroxidase nature; (c) incubation time and (d) the presence of a cation radical scavenger. With the myeloperoxidase/H2O2/system, promazine, trimeprazine, thioridazine, promethiazine, prochlorperazine, chlorpromazine and perphenazine were the most effective derivatives out of twelve phenothiazines studied. An electronegative substituent at position 2 of the phenothiazine ring such as Cl, or trifluoromethyl, propionyl and nitrile groups decreased or nullified phenothiazine activity. Myeloperoxidase/H2O2/, horseradish peroxidase/H2O2/, and myoglobin/H2O2/systems activated phenothiazines producing the corresponding cation radicals, myeloperoxidase being the most selective one with respect to phenothiazine structure. The myoglobin/H2O2/system activated phenothiazines that were scarcely active or inactivate with the MPO/H2O2/system, such as the trifluoromethyl derivatives. Production of phenothiazine cation radicals was demonstrated by optical spectroscopy. Phenothiazine cation radical stability depended on their structure as illustrated by promazine and thioridazine. Thiol compounds (GSH, N-acetyl-cysteine and penicillamine), aromatic aminoacids (L-tyrosine, L-tryptophan, and the corresponding peptides) and ascorbate scavenged phenothiazine cation radicals, thus preventing LADH inactivation. Comparison of the summarized phenothiazine effects with those of phenothiazines on T. cruzi suggest the role of cation radicals in phenothiazines chemotherapeutic actions.


Subject(s)
Animals , Humans , Cations , Dihydrolipoamide Dehydrogenase , Enzyme Inhibitors/pharmacology , Peroxidase , Phenothiazines , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents , Trypanosoma cruzi , Ascorbic Acid/pharmacology , Amino Acids, Aromatic/pharmacology , Free Radical Scavengers , Free Radicals , Peroxidase , Hydrogen Peroxide/metabolism , Recombinant Fusion Proteins/antagonists & inhibitors , Structure-Activity Relationship , Sulfhydryl Compounds , Trypanosoma cruzi
2.
Rev. argent. microbiol ; 33(1): 36-46, ene.-mar. 2001.
Article in Spanish | LILACS | ID: lil-332503

ABSTRACT

Peroxidase/H2O2/phenothiazine systems produced irreversible inhibition (inactivation) of Trypanosoma cruzi trypanothione reductase (TR). The enzyme inactivation depended on (a) the incubation time of TR with the peroxidase/H2O2/phenothiazine system; (b) the peroxidase nature and (c) the phenothiazine structure. With the more effective peroxidase/H2O2/phenothiazine systems, TR inactivation kinetics presented a relatively fast initial phase, lasting for about 10 min, in which most of the enzyme activity disappeared. This phase was followed by a slower one and, after 30 min incubation, TR was totally inactivated. Three peroxidases were assayed as catalysts of TR inactivation: the horseradish peroxidase (HRP), leukocyte myeloperoxidase (MPO) and modified myoglobin (Mb). Under comparable experimental conditions, the peroxidase system activity decreased in the given order. With HRP systems, 10 microM Thioridazine (TRDZ), Promazine (PZ), Trimeprazine (TMPZ), Prochlorperazine (PCZ), Propionylpromazine (PPZ), Chlorpromazine (CPZ) and Perphenazine (PFZ), produced 95-100 inactivation of TR. With the MPO/H2O2 systems, PZ. TRDZ and TMPZ were the most effective. Under similar experimental condition, the Mb/H2O2/PZ,/TMPZ, /TRDZ and CPZ systems effectively inactivated TR. The presence of alkylamino, piperazinyl, or piperidinyl groups in PTZ N atom (position 10) and -Cl, -CF3, -SCH3, COCH2CH3 and -CN in position C2 exerted significant influence on phenothiazine activity. Glutathione (GSH) prevented TR inactivation by the HRP/H2O2/PZ and MPO/H2O2/PZ systems. The HRP/H2O2 and MPO/H2O2/phenothiazines systems generated the corresponding cationic radicals (FTZ.+) the stability of which was limited by their conversion into phenothiazine-sulfoxides (PTZ-SO). The latter ones were inactive on TR. GSH rapidly reacted with PTZ+.; thus producing cation radical detoxication. These reactions fit in well with GSH protection of TR against the peroxidase/H2O2/phenothiazine system, as well as with the FTZ.+ role in phenothiazine cytotoxicity.


Subject(s)
Animals , Antiprotozoal Agents , NADH, NADPH Oxidoreductases , Phenothiazines , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi , Antiprotozoal Agents , Cations , Free Radicals , Glutathione , Kinetics , Molecular Structure , Oxidation-Reduction , Peroxidases , Hydrogen Peroxide/pharmacology , Phenothiazines , Recombinant Fusion Proteins/antagonists & inhibitors , Structure-Activity Relationship
3.
Bol. Acad. Nac. Med. B.Aires ; 78(2): 357-379, jul.-dic. 2000. tab, graf
Article in Spanish | LILACS | ID: lil-310989

ABSTRACT

La incubación de la tripanotiona reductasa (TR) de Trypanosoma cruzi con sistemas peroxidasa/H2O2/fenotiazina (FTZ) produjo la inhibición irreversible (inactivación) de TR. El grado de inactivación dependió de: (a) el tiempo de incubación de TR con el sistema peroxidasa/H2O2/FTZ; (b) la naturaleza de la peroxidasa y (c) la estructura de la FTZ. Con las FTZ más activas, la cinética de la inactivación presentó una fase inicial no mayor de 10 minutos, durante la cual TR perdió cerca del 90 por ciento de su actividad. Esa fase fue seguida por otra más lenta, y después de 30 minutos de incubación, TR fue completamente inactiva. Se ensayaron tres peroxidasas, a saber: la peroxidasa de rábano (HRP), la mieloperoxidasa de leucocitos (MPO) y la mioglobina modificada (Mb). En condiciones experimentales comparables, la actividad de las peroxidasas como componentes de los sistemas ensayados decreció en el orden indicado. Con el sistema HRP/H2O2/FTZ, la inactivación final de TR fue de 95-100 por ciento con Tioridazina (TRDZ), Promazina (PZ), Trimeprazina (TMPZ), Proclorpromazina (PCP), Propionilpromazina (PPZ) y Perfenazina (PFZ), todas en concentración 10 µM. Con los sistemas MPO/H2O2/FTZ, las FTZ más activas fueron PZ, TRDZ, TMPZ, PCP y Clorpromazina (CPZ). En iguales condiciones, los sistemas Mb/H2O2/FTZ también inactivaron a TR, utilizando PZ, TMPZ, TRDZ y CPZ. Grupos alquilamino, piperazinilo o piperidilo en la posición 10 (el N) y átomos o grupos -CI, -CF3, -SCH3, COCH2CH3 y -CN en la posición C2 de FTZ afectaron significativamente la actividad de las FTZs. El glutatión (GSH) previno la inactivación de TR por los sistemas HRP/H2O2/PZ y MPO/H2O2/PZ. Los sistemas HRP/H2O2/FTZ y MPO/H2O2/FTZ generaron los radicales catiónicos FTZú+, con estabilidad limitada por su conversión en fenotiazina-sulfoxidos (FTZ-SO), aparentemente inactivos sobre TR. El GSH reaccionó con los radicales catiónicos, regenerando las FTZ originales, lo que concuerda con la protección de TR por GSH frente a los sistemas peroxidasa/H2O2/PZ y, por lo tanto, con la intervención de los radicales catiónicos en la inactivación de TR por los mismos sistemas.


Subject(s)
Animals , Antiprotozoal Agents , Chagas Disease , NADH, NADPH Oxidoreductases , Phenothiazines , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi , Antiprotozoal Agents , Cations , Free Radicals , Glutathione/metabolism , Kinetics , Molecular Structure , Oxidation-Reduction , Peroxidases , Hydrogen Peroxide/pharmacology , Phenothiazines , Recombinant Fusion Proteins/antagonists & inhibitors , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL